

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code : BC02001051

Course / Subject Name : Mathematics-2

w. e. f. Academic Year:	2024-25
Semester:	2
Category of the Course:	Multidisciplinary Course

Prerequisite:	Basic mathematical skills						
Rationale:	This course provides a foundational understanding of mathematical logic, relations, and graph theory, which are essential areas of study in computer science, mathematics, and related disciplines.						
	Mathematical Logic forms the basis for reasoning and decision-making in computational systems, algorithm design, and programming languages. The study of statements, connectives, and truth tables equips students with the tools to analyze and verify logical expressions, which is crucial for building efficient algorithms, error-checking mechanisms, and developing formal proofs. The topics of tautology, contradiction, equivalence, and normal forms foster the ability to simplify and manipulate logical statements, making them more computationally feasible and interpretable.						
	The section on Relations & Ordering explores the mathematical structures that underlie the relationships between different objects in a set, forming the foundation for database theory, object-oriented programming, and the design of relational systems. Understanding properties like binary relations, equivalence relations, and partial ordering prepares students for analyzing data relationships and optimizing search and retrieval operations. These concepts also support the study of graph theory by offering methods to categorize and compare sets of data and relationships systematically.						
	Graph Theory , an essential tool for modeling networks, structures, and systems, is introduced to students in this course through its various components, such as nodes , edges , paths , and connectivity . Topics like directed and undirected graphs , isomorphic graphs , and reachability provide students with the skills to represent and solve real-world problems, such as transportation networks, social networks, and communication systems. Additionally, concepts of graph connectivity and path finding are crucial in algorithmic design, particularly in areas like network routing, graph traversal, and optimization.						
	This course builds logical thinking, analytical skills, and problem-solving abilities that are central to computer science, ensuring students are well-prepared for more advanced topics in algorithms, data structures, artificial intelligence, and software						

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code : BC02001051

Course / Subject Name : Mathematics-2

engineering. By mastering these foundational concepts, students will be equipped to address complex computational challenges and contribute to innovations in various technical fields.

Course Outcome:

After completion of the course, students will be able to:

No	Course Outcomes	RBT Level*
1	Apply principles of mathematical logic to design and optimize algorithms by constructing and simplifying logical expressions, using truth tables, normal forms, and logical connectives to verify correctness and prove equivalence.	AP
2	Apply concepts of relations and ordering to model and analyze real-world systems by using relation matrices, graphs, and partitioning techniques to represent binary relations, equivalence relations, and partial orderings in problem-solving and data organization tasks.	AP
3	Apply combinatorial techniques, including counting principles, permutations, combinations, the pigeonhole principle, and binomial coefficients, to solve complex problems in probability, optimization, and algorithm design.	AP
4	Apply graph theory concepts, such as directed and undirected graphs, paths, cycles, and connectivity, to model and solve problems in network analysis, resource optimization, and route planning, utilizing graph representations to analyze relationships and determine efficient solutions in real-world systems.	AP

Teaching and Examination Scheme:

	hing Sc n Hour		Total Credits L+T+ (PR/2)	Ass	sessment Patte	essment Pattern and Marks		
T	т	PR	С	T	heory	Tutorial / Practical		Marks
L	1	IN	C	ESE (E)	PA / CA (M)	PA/CA (I)	ESE (V)	
4	0	0	4	70	30	-	-	100

Course Content:

Unit	Content	No. of	Weightage
No.		Hours	(%)
1	Mathematical Logic	11	25%
	Statements and Notation		
	Connectives (Negation, Conjunction, Disjunction)		
	Statement Formulas and Truth Table		
	> Conditional and Biconditional statement; Tautology and		
	contradiction		

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code : BC02001051

Course / Subject Name : Mathematics-2

	Equivalence Formulas		
	Duality		
	Normal Forms		
2	Relation & Ordering	11	25%
	Relations		
	Properties of Binary Relations in a set		
	Relation Matrix and Graph of a Relation		
	Partition and Covering of a Set		
	Equivalence Relations		
	Compatibility Relations		
	> Partial ordering		
	> Partially ordered set: Representation and Associated		
	Terminologies		
3	Combinatorics	11	25%
	The Basic Counting Principles		
	Permutations and Combinations		
	Pigeonhole Principle		
	Binomial Coefficient		
	 Discrete Probability 		
4	Graph Theory:	12	25%
	➢ Basic Concepts of Graph Theory; Initial Terminal nodes;		
	Adjacent nodes; Directed edge; Undirected Edge; Directed		
	Graph (Digraph), Undirected Graph; Mixed Graph; Loop;		
	Distinct Edges; Parallel Edges; Multi Graph; Simple Graph;		
	Weighted Graph; Isolated Nodes; Pendent Nodes; Null		
	Graph; Isomorphic Graphs; In-degree, Out-degree, Total-		
	degree; Sub graph.		
	> Paths, Length of a Path of a graph; Simple Path; Elementary		
	Path; Cycle(circuit); Simple Cycle; Elementary cycle; Path of		
	Minimum Length (Geodesic); Distance between two nodes;		
	Reachability; Reachable set of a Node; Connected Graph;		
	Strongly, Unilaterally, Weakly Connected Graph &		
	Components		
	Total Hours:	45	100%

Suggested Specification Table with Marks (Theory):

		Distribution of	Theory Marks		
R Level	U Level	A Level	N Level	E Level	C Level

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code : BC02001051

Course / Subject Name : Mathematics-2

|--|

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources: (a) **Textbook:**

Sr No.	Book Title	Edition	Publisher	Author(s)
1.	Discrete Mathematical Structures with Applications to Computer Science	Latest	Tata McGraw Hill	J.P. Trembly; R. Manohar
2.	Discrete Mathematics	Latest	Cengage Learning	D. S. Malik; M.K. Sen

Reference Books:

Sr No.	Book Title	Edition	Publisher	Author(s)
1.	A textbook of Discrete	Latest	S. Chand Publication	Swapan Kumar Sarkar
	Mathematics			
2.	Discrete Mathematics	Latest	Oxford University Press	Swapan Kumar Chakraborty;
				Bikas Kanti Sarkar

CO- PO Mapping:

Semester 2		Subject Name: Mathematics-2									
		POs									
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	3	1	-	-	1	-	-	-	-	-	-
CO2	3	1	-	-	1	-	-	-	-	-	-
CO3	3	1	-	-	1	-	-	-	-	-	-
CO4	3	1	-	-	1	-	-	-	-	-	-

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

* * * * * * *

w.e.f. 2024-25

http://syllabus.gtu.ac.in/