

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code: BC01001051

Course / Subject Name: Mathematics -1

w. e. f. Academic Year:	June-2024
Semester:	1
Category of the Course:	Multidisciplinary Course

Prerequisite:	Students must have a basic mathematical understanding of basic algebra, arithmetic, introductory geometry, graphs, and logical reasoning studied up to 12 th standard
Rationale:	This course is crucial for an undergraduate program in Computer Applications, as it provides essential mathematical foundations that underpin key concepts in computer science and information technology. Set theory, functions, matrices, and coordinate geometry are integral to understanding and developing algorithms, data structures, and various computational applications. For instance, set theory is fundamental to database management and algorithm design, while functions and their properties are central to programming and data transformations. Matrices are pivotal in areas such as computer graphics, cryptography, and machine learning, and coordinate geometry is vital for rendering graphics and spatial data analysis.
	By mastering these mathematical concepts, students gain the tools needed for practical applications in algorithm design, database management, computer graphics, and cryptography. This course also prepares students for advanced topics in computer science, such as data structures, machine learning, and software development. Integrating theoretical knowledge with practical applications ensures that students are well-equipped to tackle complex computational problems and innovate in the dynamic field of computer science and information technology.

Course Outcome:

After Completion of the Course, Student will able to:

No	Course Outcomes	RBT Level
01	Demonstrate proficiency in performing and analyzing set operations, applying properties of set operations, and utilizing Venn diagrams to solve practical problems.	AP
02	Define, represent, and analyze various functions, including exponential, logarithmic, and trigonometric functions, using appropriate graphs and properties.	AP
03	Execute matrix arithmetic, determine the properties of determinants, and apply these concepts to solve linear equations using Cramer's rule and matrix inversion methods.	AP

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code: BC01001051

Course / Subject Name: Mathematics -1

	Apply coordinate geometry principles to analyze and solve problems involving	AP
04	distances, areas, and equations of lines, including understanding the	
	relationships between parallel and perpendicular lines.	

Teaching and Examination Scheme:

	hing Sch n Hours)	g Scheme lours) Total Credits L+T+ (PR/2)		As	Total			
		DD	G	Т	heory	Tutorial / I	Marks	
	Т	PR	С	ESE (E)	PA / CA (M)	PA/CA (I)	ESE (V)	
4	0	0	4	70	30	-	-	100

Course Content:

Unit No.	Content	No. of Hours	% of Weightage
	Set Theory:	14	25
	Concept of Set Theory		
	 Methods of representation of Set 		
	• Types and operations of Set operations (Union, Intersection,		
	Complement of a set, Difference of sets, Symmetric difference,		
1.	Cartesian product of sets)		
	• Properties of set operations (Commutative, Associative,		
	Distributive, De- Morgan's laws)		
	 Power set and Cardinality of sets. Vann Diagram 		
	 Venn Diagram Provide Applications of Set theory 		
	Practical Applications of Set theory Functions:	14	25
		14	23
	Introduction and Definition of Function		
	• Domain, Co-domain, and Range of a function		
2.	• Graph of a functions		
	• Types of Functions (Linear, Quadratic, Polynomial, Implicit and -		
	Explicit functions and examples related with it)		
	• Exponential and Logarithmic with their properties and related		
	examples, Introduction to Trigonometric functions.		
	Matrix and Determinant:	14	25
3.	• Definition of Matrix		
5.	• Types of Matrices (Square, Row, Column, Zero, Diagonal, Scalar,		
	Identity, Transpose, Symmetric, Skew – symmetric)		

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code: BC01001051

Course / Subject Name: Mathematics -1

	Total	56	100
	• Angle between two lines (without proof) and related examples		10.0
	Perpendicular Lines		
	Parallel Lines		
	• Slope and intercepts of a line		
	General Equation of a Straight line		
4.	• Area of a triangle (without proof) and related examples		
	• Section Formula (without proof)		
	• Distance formula in R ² (without proof)		
	• Quadrants and Lines		
	Introduction to Co-ordinates		
	Co-ordinate Geometry:	14	25
	• Rank of Matrix		
	• Row and column operation on Matrix		
	Cramer's – Rule		
	• Derive solution of set of Linear equations for 2 variables using		
	• Matrix inversion using adjoint matrix method		
	• Invertible matrix		
	• Introduction to Determinants		
	 Arithmetic operations of Matrices (Addition, Scalar Multiplication, Matrix Multiplication) 		

Suggested Specification Table with Marks (Theory):

Distribution of Theory Marks										
R LevelU LevelA LevelN LevelE LevelC Level										
10	20	70	-	-	-					

Where R: Remember; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create (as per Revised Bloom's Taxonomy)

References/Suggested Learning Resources:

(a) Books:

- 1. Business Mathematics by D C Sancheti and V K Kapoor, S. Chand and Sons Publication, Publication Year 2011
- 2. Business Mathematics by J K Singh, 3rd Edition, Himalaya Publication
- 3. A Textbook of Business Mathematics by Padmalochan Hazarika, 4th Edition, S. Chand and Sons Publication

Program Name: Bachelor of Computer Applications

Level: Under Graduate

Course / Subject Code: BC01001051

Course / Subject Name: Mathematics -1

4. Engineering Mathematics by Anthony Croft, Robert Davison, Martin Hargreaves; 5th Edition; Pearson Publication

(b) Open source software and website:

1. SciLAB is an excellent opensource software for mathematics simulation and solution. It can be downloaded from <u>https://www.scilab.org/</u>

CO- PO Mapping:

Semester-1		Course Name : Mathematics-1										
	POs											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	2	2	-	-	2	-	-	-	-	-
CO2	2	3	3	2	-	-	1	-	-	-	-	-
CO3	2	3	3	3	_	-	2	_	-	_	_	_
CO4	1	3	3	3	-	-	2	_	-	_	-	_

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

* * * * * * *